

Fault Attacks on a Cloud-Assisted ECDSA White-Box Based on the Residue Number System

Christophe Giraud and Agathe Houzelot

September 10, 2023

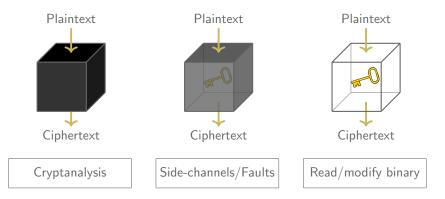
Outline

- 1 > Preliminaries
- 2 > An RNS-based ECDSA White-Box
- 3 > Breaking the White-Box with Faults
- 4 > An Efficient Countermeasure
- 5 > Conclusion

Preliminaries

()) IDEMIA

Black-Box, Grey-Box, White-Box



Fault Attacks in the White-Box Model

Goal

Disturb the execution and exploit the resulting faulty output

- > Grey-box: laser, glitches
- > White-box: modification of the binary, debugging tools
 - $\rightarrow\,$ Very precise faults, easy to reproduce
 - \rightarrow New possibilities for the attacker (e.g. re-injection of intermediate values in later executions)

The Elliptic Curve Digital Signature Algorithm

- \rightarrow G : point of order n on an elliptic curve E
- > d : 256-bit secret key
- > e : hash of the plaintext

Algorithm 1: ECDSA signature

1 $k \stackrel{\$}{\leftarrow} \llbracket 1, n-1 \rrbracket$ 2 $R \leftarrow \llbracket k \rrbracket G$

- $3 r \leftarrow x_R \mod n$
- 4 $s \leftarrow k^{-1}(e + rd) \mod n$
- 5 Return (r,s)

The Residue Number System (RNS)

β = {p₁,..., p_t} : set of pairwise coprime integers
x = (x₁,..., x_t) with x_i = x mod p_i if 0 ≤ x < P = ∏^t_{i=1} p_i
For ⊙ ∈ {+, -, ×}, z = x ⊙ y ⇔ z_i = x_i ⊙ y_i and z = CRT(z_i) if 0 ≤ z < P

An RNS-based ECDSA White-Box

2

2020: Very first public ECDSA white-box scheme (Zhou et al.)

2020: Very first public ECDSA white-box scheme (Zhou et al.)

Initialization :

During a secured initialization phase a TTP generates:

2020: Very first public ECDSA white-box scheme (Zhou et al.)

Initialization :

During a secured initialization phase a TTP generates:

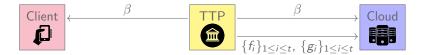
1 a basis $\beta = \{p_i\}_{1 \le i \le t}$ with $\prod_{i=1}^{t} p_i > n^2 + n$

2020: Very first public ECDSA white-box scheme (Zhou et al.)

Initialization :

During a secured initialization phase a TTP generates:

- **1** a basis $\beta = \{p_i\}_{1 \le i \le t}$ with $\prod_{i=1}^{t} p_i > n^2 + n$
- **2** random permutations f_i and g_i on \mathbb{Z}_{p_i}



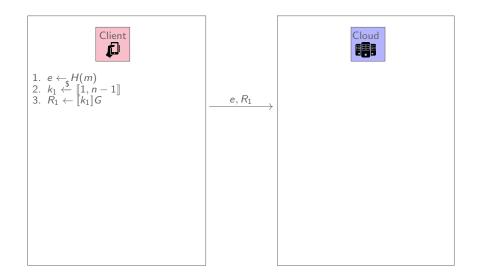
2020: Very first public ECDSA white-box scheme (Zhou et al.)

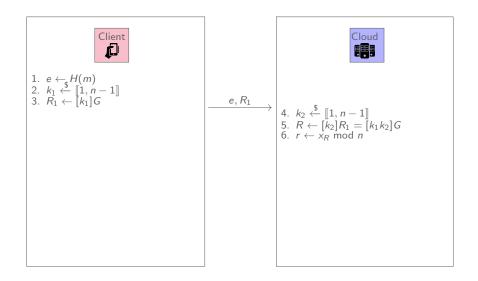
Initialization :

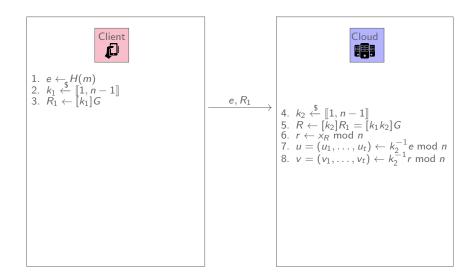
During a secured initialization phase a TTP generates:

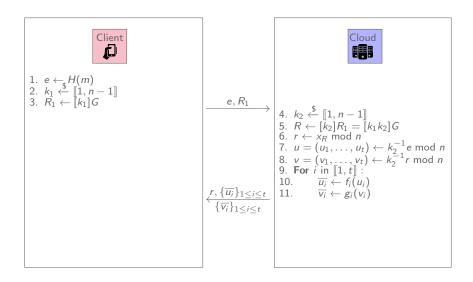
- **0** a basis $\beta = \{p_i\}_{1 \le i \le t}$ with $\prod_{i=1}^t p_i > n^2 + n$
- **2** random permutations f_i and g_i on \mathbb{Z}_{p_i}
- look-up tables

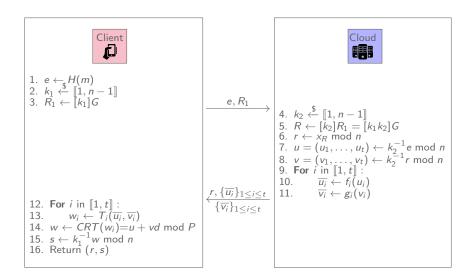
$$T_i(j,k) = f_i^{-1}(j) + g_i^{-1}(k)d_i \mod p_i$$



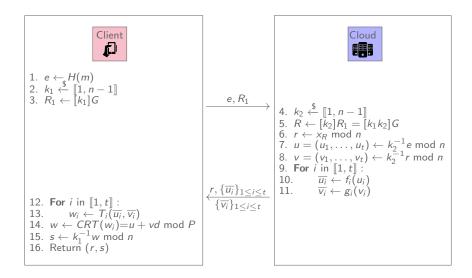


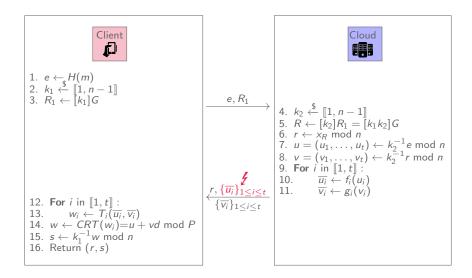


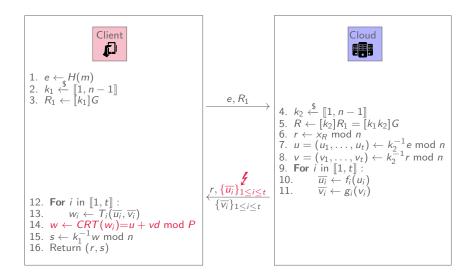




Breaking the White-Box with Faults







1 1^{st} execution: store the values $w^{(1)} = u^{(1)} + v^{(1)}d \mod P$ and $u_i^{(1)}$

- **1** 1^{st} execution: store the values $w^{(1)} = u^{(1)} + v^{(1)}d \mod P$ and $u_i^{(1)}$
- 2nd execution: change $u_i^{(2)}$ into $u_i^{(1)}$ in order to obtain $w^{(2)} = u^{(1)} + v^{(2)}d \mod P$

- **1** 1^{st} execution: store the values $w^{(1)} = u^{(1)} + v^{(1)}d \mod P$ and $u_i^{(1)}$
- 2nd execution: change $u_i^{(2)}$ into $u_i^{(1)}$ in order to obtain $w^{(2)} = u^{(1)} + v^{(2)}d \mod P$
- **3** r^{d} execution: change $\overline{u_{i}^{(3)}}$ into $\overline{u_{i}^{(1)}}$ in order to obtain $w^{(3)} = u^{(1)} + v^{(3)}d \mod P$

1 1^{st} execution: store the values $w^{(1)} = u^{(1)} + v^{(1)}d \mod P$ and $u_i^{(1)}$

- 2nd execution: change $u_i^{(2)}$ into $u_i^{(1)}$ in order to obtain $w^{(2)} = u^{(1)} + v^{(2)}d \mod P$
- **3** r^{d} execution: change $\overline{u_{i}^{(3)}}$ into $\overline{u_{i}^{(1)}}$ in order to obtain $w^{(3)} = u^{(1)} + v^{(3)}d \mod P$
- $\textbf{4} \quad \text{Compute} \begin{cases} a = w^{(1)} w^{(2)} = (v^{(1)} v^{(2)})d \mod P \\ b = w^{(1)} w^{(3)} = (v^{(1)} v^{(3)})d \mod P \end{cases}$

1 1^{st} execution: store the values $w^{(1)} = u^{(1)} + v^{(1)}d \mod P$ and $u_i^{(1)}$

- 2nd execution: change $u_i^{(2)}$ into $u_i^{(1)}$ in order to obtain $w^{(2)} = u^{(1)} + v^{(2)}d \mod P$
- **3** 3^{rd} execution: change $\overline{u_i^{(3)}}$ into $\overline{u_i^{(1)}}$ in order to obtain $w^{(3)} = u^{(1)} + v^{(3)}d \mod P$
- Compute $\begin{cases} a = w^{(1)} w^{(2)} = (v^{(1)} v^{(2)})d \mod P \\ b = w^{(1)} w^{(3)} = (v^{(1)} v^{(3)})d \mod P \end{cases}$

6 Compute $gcd(a, b) = \alpha \times d$ with $\alpha = gcd(v^{(1)} - v^{(2)}, v^{(1)} - v^{(3)})$

1 1^{st} execution: store the values $w^{(1)} = u^{(1)} + v^{(1)}d \mod P$ and $u_i^{(1)}$

- 2nd execution: change $u_i^{(2)}$ into $u_i^{(1)}$ in order to obtain $w^{(2)} = u^{(1)} + v^{(2)}d \mod P$
- **3** 3^{rd} execution: change $\overline{u_i^{(3)}}$ into $\overline{u_i^{(1)}}$ in order to obtain $w^{(3)} = u^{(1)} + v^{(3)}d \mod P$

• Compute $\begin{cases} a = w^{(1)} - w^{(2)} = (v^{(1)} - v^{(2)})d \mod P \\ b = w^{(1)} - w^{(3)} = (v^{(1)} - v^{(3)})d \mod P \end{cases}$

6 Compute $gcd(a, b) = \alpha \times d$ with $\alpha = gcd(v^{(1)} - v^{(2)}, v^{(1)} - v^{(3)})$

6 Brute force the value of α and recover d

Remark 1

We can compute the gcd of *a* and *b* because there is no reduction modulo *P* in the computations due to the fact that $P > n^2 + n$.

Remark 1

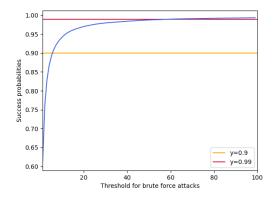
We can compute the gcd of *a* and *b* because there is no reduction modulo *P* in the computations due to the fact that $P > n^2 + n$.

Remark 2

Step 6 is possible because most of the time, α is very small. Theoretically, in 99% of cases, we have $\alpha \leq 62$.

Experiments

- > We attacked 50 000 different white-box instances
- > Limit for the brute force set at 58 \Rightarrow success rate of 0.99 (coherent)



An Efficient Countermeasure

4

An Efficient Countermeasure

Key Idea

Both our attacks require to fault $\overline{u_i}$ without impacting $\overline{v_i}$. A countermeasure is thus to bind these values together.

Initialization :

An Efficient Countermeasure

Key Idea

Both our attacks require to fault $\overline{u_i}$ without impacting $\overline{v_i}$. A countermeasure is thus to bind these values together.

Initialization :

) A unique set of bigger permutations $\{h_i\}$ replaces $\{f_i\}$ and $\{g_i\}$

An Efficient Countermeasure

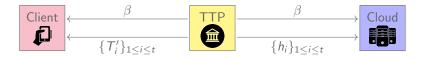
Key Idea

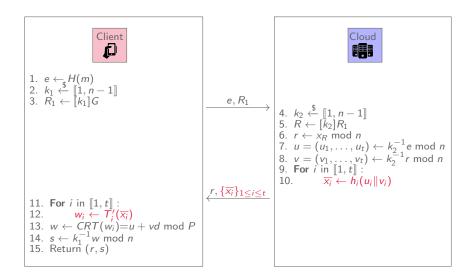
Both our attacks require to fault $\overline{u_i}$ without impacting $\overline{v_i}$. A countermeasure is thus to bind these values together.

Initialization :

- **)** A unique set of bigger permutations $\{h_i\}$ replaces $\{f_i\}$ and $\{g_i\}$
- **)** The tables T'_i are constructed as

$$T'_i(j) = LSB(h_i^{-1}(j)) + MSB(h_i^{-1}(j))d_i \mod p_i$$





Impact on Performances

On the cloud. One has to store and apply bigger permutations \rightarrow Memory overhead

On the client. The size of the tables remains unchanged \rightarrow No overhead

Conclusion 5

Conclusion

- > We broke the firstly published ECDSA White-Box Scheme
- > Two fault attacks based on re-injections were presented
- > An efficient countermeasure has been suggested
- > Protecting ECDSA in the white-box context is a very difficult task as shown by the WhibOx Contest 2021

Thank you for your attention

 $\underbrace{\langle\!\langle \rangle\!\rangle} \mathsf{IDEMIA}$ Join us on (f) (g) (in (g) (g)

www.idemia.com