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Fault Attacks in the White-Box Model

Goal

Disturb the execution and exploit the resulting faulty output

Grey-box: laser, glitches

White-box: modification of the binary, debugging tools

→ Very precise faults, easy to reproduce
→ New possibilities for the attacker (e.g. re-injection of intermediate

values in later executions)
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The Elliptic Curve Digital Signature Algorithm

G : point of order n on an elliptic curve E

d : 256-bit secret key

e : hash of the plaintext

Algorithm 1: ECDSA signature

1 k
$←− J1, n − 1K

2 R ← [k]G
3 r ← xR mod n
4 s ← k−1(e + rd) mod n
5 Return (r,s)
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The Residue Number System (RNS)

β = {p1, . . . , pt} : set of pairwise coprime integers

x = (x1, . . . , xt) with xi = x mod pi if 0 ≤ x < P =
∏t

i=1 pi

For � ∈ {+,−,×}, z = x � y ⇔ zi = xi � yi and z = CRT (zi )
if 0 ≤ z < P
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An RNS-based ECDSA
White-Box
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Zhou et al.’s Implementation

2020: Very first public ECDSA white-box scheme (Zhou et al.)

Initialization :
During a secured initialization phase a TTP generates:

¶ a basis β = {pi}1≤i≤t with
∏t

i=1 pi > n2 + n

· random permutations fi and gi on Zpi

¸ look-up tables

Ti (j , k) = f −1
i (j) + g−1

i (k)di mod pi

Client

TTP

Cloud

β β

{fi}1≤i≤t , {gi}1≤i≤t{Ti}1≤i≤t
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Signature Algorithm

.

Client Cloud

1. e ← H(m)
2. k1

$←− J1, n − 1K
3. R1 ← [k1]G e,R1

4. k2
$←− J1, n − 1K

5. R ← [k2]R1 = [k1k2]G
6. r ← xR mod n
7. u = (u1, . . . , ut)← k−1

2 e mod n
8. v = (v1, . . . , vt)← k−1

2 r mod n
9. For i in J1, tK :
10. ui ← fi (ui )
11. vi ← gi (vi )r , {ui}1≤i≤t

{vi}1≤i≤t12. For i in J1, tK :
13. wi ← Ti (ui , vi )
14. w ← CRT (wi )=u + vd mod P
15. s ← k−1

1 w mod n
16. Return (r , s)
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The Greatest Common Divisor Attack
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The Greatest Common Divisor Attack

¶ 1st execution: store the values w (1) = u(1) + v (1)d mod P and u
(1)
i

· 2nd execution: change u
(2)
i into u

(1)
i in order to obtain

w (2) = u(1) + v (2)d mod P

¸ 3rd execution: change u
(3)
i into u

(1)
i in order to obtain

w (3) = u(1) + v (3)d mod P

¹ Compute

{
a = w (1) − w (2) = (v (1) − v (2))d mod P

b = w (1) − w (3) = (v (1) − v (3))d mod P

º Compute gcd(a, b) = α× d with α = gcd(v (1) − v (2), v (1) − v (3))

» Brute force the value of α and recover d
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The Greatest Common Divisor Attack

Remark 1

We can compute the gcd of a and b because there is no reduction
modulo P in the computations due to the fact that P > n2 + n.

Remark 2

Step 6 is possible because most of the time, α is very small.
Theoretically, in 99% of cases, we have α ≤ 62.
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Experiments

We attacked 50 000 different white-box instances

Limit for the brute force set at 58 ⇒ success rate of 0.99 (coherent)
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An Efficient Countermeasure

Key Idea

Both our attacks require to fault ui without impacting vi .
A countermeasure is thus to bind these values together.

Initialization :

A unique set of bigger permutations {hi} replaces {fi} and {gi}
The tables T ′i are constructed as

T ′i (j) = LSB(h−1
i (j)) + MSB(h−1

i (j))di mod pi

Client TTP Cloud
β β

{hi}1≤i≤t{T ′i }1≤i≤t
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New Signature Algorithm

.

Client Cloud

1. e ← H(m)
2. k1

$←− J1, n − 1K
3. R1 ← [k1]G e,R1

4. k2
$←− J1, n − 1K

5. R ← [k2]R1
6. r ← xR mod n
7. u = (u1, . . . , ut)← k−1

2 e mod n
8. v = (v1, . . . , vt)← k−1

2 r mod n
9. For i in J1, tK :
10. xi ← hi (ui‖vi )

r , {xi}1≤i≤t

11. For i in J1, tK :
12. wi ← T ′i (xi )
13. w ← CRT (wi )=u + vd mod P
14. s ← k−1

1 w mod n
15. Return (r , s)
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Impact on Performances

On the cloud. One has to store and apply bigger permutations
→ Memory overhead

On the client. The size of the tables remains unchanged
→ No overhead
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Conclusion

We broke the firstly published ECDSA White-Box Scheme

Two fault attacks based on re-injections were presented

An efficient countermeasure has been suggested

Protecting ECDSA in the white-box context is a very difficult task
as shown by the WhibOx Contest 2021
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